Rings Emanating From Sun – Schumann Resonance – BP EarthWatch

 

Schumann resonancesWikipedia, the free encyclopedia

Hubble Eyes Golden Rings of Star Formation – GalacticConnection.com – 6-15-14

 Hubble Eyes Golden Rings of Star Formation

 

http://www.nasa.gov/content/goddard/hubble-eyes-golden-rings-of-star-formation/#.U53Gpih8x6Z

Taking center stage in this new NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 3081, set against an assortment of glittering galaxies in the distance. Located in the constellation of Hydra (The Sea Serpent), NGC 3081 is located over 86 million light-years from us. It is known as a type II Seyfert galaxy, characterized by its dazzling nucleus.

NGC 3081 is seen here nearly face-on. Compared to other spiral galaxies, it looks a little different. The galaxy’s barred spiral center is surrounded by a bright loop known as a resonance ring. This ring is full of bright clusters and bursts of new star formation, and frames the supermassive black hole thought to be lurking within NGC 3081 — which glows brightly as it hungrily gobbles up in-falling material.

These rings form in particular locations known as resonances, where gravitational effects throughout a galaxy cause gas to pile up and accumulate in certain positions. These can be caused by the presence of a “bar” within the galaxy, as with NGC 3081, or by interactions with other nearby objects. It is not unusual for rings like this to be seen in barred galaxies, as the bars are very effective at gathering gas into these resonance regions, causing pile-ups which lead to active and very well-organized star formation.

Hubble snapped this magnificent face-on image of the galaxy using the Wide Field Planetary Camera 2. This image is made up of a combination of ultraviolet, optical, and infrared observations, allowing distinctive features of the galaxy to be observed across a wide range of wavelengths.

Image credit: ESA/Hubble & NASA; acknowledgement: R. Buta (University of Alabama)
Text credit: 
European Space Agency

 

Found at Galactic Connection .com

http://galacticconnection.com/hubble-eyes-golden-rings-star-formation/

 

 

RT.com – Dwarf planet ‘Biden’ identified in an unlikely region of our solar system – 3-27-14

A newly discovered planet-like object, dubbed "Sedna" is seen in this artist's concept released by NASA March 26, 2014. (Reuters / NASA / JPL-Caltech / Handout via Reuters)

http://rt.com/news/dwarf-planet-biden-unlikely-region-505/

A newly discovered planet-like object, dubbed “Sedna” is seen in this artist’s concept released by NASA March 26, 2014. (Reuters / NASA / JPL-Caltech / Handout via Reuters)

The planetary body was discovered in the outer regions of space, which scientists long believed was populated by nothing more than floating chunks of matter, until they discovered a dwarf planet in 2003. That dwarf planet, a term that is defined as a celestial body that is neither entirely a ‘planet’ or a satellite but orbits the sun, was dubbed Sedna in honor of the goddess who created the creatures of the Arctic sea in Inuit mythology.

Planetary observers previously thought that Sedna was an anomaly. The newly found dwarf planet is currently named VP 113, but because of the object’s initials it is jokingly nicknamed “Biden” after the US vice president.

Chad Trujillo, an astronomer at Gemini University in Hilo, Hawaii, and Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington DC, first reported the finding in Wednesday’s issue of Nature science journal.

It goes to show that there’s something we don’t know about our Solar System, and it’s something important,” Trujillo said. “We’re starting to get a taste of what’s out beyond what we consider the edge.”

Using advanced technology to gaze 7.5 billion miles into space, the team first found the small dot years ago. They have observed and recorded its path since then and found that, despite being so far away from the sun, “Biden” still floats around the gravitational center of the solar system.

In the future, after more researchers note the celestial body’s orbit, they will submit a new name for official consideration by the International Astronomical Union (IAU).

Astronomers use astronomical units (AU), one of which is equivalent to approximately 150 million kilometers, to measure distance in space. During Sedna’s orbit its distance from the sun ranges from 76 AU to 1,000 AU. Yet VP 113 never travels further away than 452 AU from Earth, a distinction that is still perplexing to much of the scientific community.

At 280 miles across (and with a temperature of minus 430 Fahrenheit), VP 113 is approximately half the size of Sedna, and a fraction of the 7,900 mile diameter that makes Earth.

Finding Sedna so far away seemed odd and potentially a fluke,” Mike Brown, an astronomer at the California Institute of Technology, told the Associated Press. “But this one is beginning to make it look like that might be a typical place for objects to be. Not at all what I would have guessed.”

Experts now suspect that there may be tens of thousands of similar objects, though they would not speculate if future discoveries will prove as large as Sedna or VP 113. Trujillo and Sheppard used a 520-megapixel Dark Energy camera located on a telescope at the renown Cerro Tololo Inter-American Observatory in Chile.

The discovery comes after a string of new findings which have illuminated what is known about outer space. In an unrelated announcement in Nature, Brazilian astronomers identified a pair of rings circling Chariklo, an asteroid that is also considered a minor planet. It was the first time gas rings, which astronomers speculated formed due to debris from a collision, were found outside of Jupiter, Saturn, Uranus, and Neptune.

What we are witnessing is perhaps the unveiling of an object that is in the middle of the same stage of development as the Earth and the moon 4.5 billion years ago, when there was a giant collision between Earth and another planet,” the University of Copenhagen’s Uffe Graae Jorgensen said Wednesday in a news release, as quoted by CBC.

Last month NASA announced it had found 715 new planets outside the solar system, nearly doubling the previous total known planets in the galaxy.

 

http://rt.com/news/dwarf-planet-biden-unlikely-region-505/

 

NASA Finds – Hand Of God

DAHBOO77·589 videos

This has quickly become one of my favorites! The fact that there is SO MUCH DETAIL!
The odds of finding a hand are 1 thing. But to find an Eye in the Palm within a Diamond is Taking it to a Whole New Level! Then,.. The Image Of The Face Of Man! WOW!

http://www.space.com/24225-hand-of-go…

http://blackholesunews.blogspot.com/2…

Astonishing Asteroid Becomes a Comet – ThunderboltsProject

ThunderboltsProject·128 videos

 

Daily Galaxy .com – Other Universes are Pulling on Our Universe – New Planck Data Triggers Controversy

R-OLDEST-GALAXY-large570

Daily Galaxy ,com
Is our universe merely one of billions? Evidence of the existence of ‘multiverse’ revealed for the first time by a cosmic map of background radiation data gathered by Planck telescope. The first ‘hard evidence’ that other universes exist has been claimed to have been found by cosmologists studying new Planck data released this past June. They have concluded that it shows anomalies that can only have been caused by the gravitational pull of other universes.

“Such ideas may sound wacky now, just like the Big Bang theory did three generations ago,” says George Efstathiou, professor of astrophysics at Cambridge University.”But then we got evidence and now it has changed the whole way we think about the universe.”

Scientists had predicted that it should be evenly distributed, but the map shows a stronger concentration in the south half of the sky and a ‘cold spot’ that cannot be explained by current understanding of physics. Laura Mersini-Houghton, theoretical physicist at the University of North Carolina at Chapel Hill, and Richard Holman, professor at Carnegie Mellon University, predicted that anomalies in radiation existed and were caused by the pull from other universes in 2005. Mersini-Houghton will be in Britain soon promoting this theory and, we expect, the hard evidence at the Hay Festival on May 31 and at Oxford on June 11.

Dr Mersini-Houghton believes her hypothesis has been proven from the Planck data that data has been used to create a map of light from when the universe was just 380,000 years old. “These anomalies were caused by other universes pulling on our universe as it formed during the Big Bang,” she says. “They are the first hard evidence for the existence of other universes that we have seen.”

Columbia University mathematician Peter Woit writes in his blog, Not Even Wrong, that in recent years there have been many claims made for “evidence” of a multiverse, supposedly found in the CMB data. “Such claims often came with the remark that the Planck CMB data would convincingly decide the matter. When the Planck data was released two months ago, I looked through the press coverage and through the Planck papers for any sign of news about what the new data said about these multiverse evidence claims. There was very little there; possibly the Planck scientists found these claims to be so outlandish that it wasn’t worth the time to look into what the new data had to say about them.

“One exception,” Woit adds, “was this paper, where Planck looked for evidence of ‘dark flow’. They found nothing, and a New Scientist article summarized the situation: ‘The Planck team’s paper appears to rule out the claims of Kashlinsky and collaborators,’ says David Spergel of Princeton University, who was not involved in the work. If there is no dark flow, there is no need for exotic explanations for it, such as other universes, says Planck team member Elena Pierpaoli at the University of Southern California, Los Angeles. “You don’t have to think of alternatives.'”

Dark Flow” sounds like a new SciFi Channel series. It’s not! The dark flow is controversial because the distribution of matter in the observed universe cannot account for it. Its existence suggests that some structure beyond the visible universe — outside our “horizon” — is pulling on matter in our vicinity.

Back in the Middle Ages, maps showed terrifying images of sea dragons at the boundaries of the known world. Today, scientists have observed strange new motion at the very limits of the known universe – kind of where you’d expect to find new things, but they still didn’t expect this. A huge swath of galactic clusters seem to be heading to a cosmic hotspot and nobody knows why.

Cosmologists regard the microwave background — a flash of light emitted 380,000 years after the universe formed — as the ultimate cosmic reference frame. Relative to it, all large-scale motion should show no preferred direction. A 2010 study tracked the mysterious cosmic ‘dark flow’ to twice the distance originally reported. The study was led by Alexander Kashlinsky at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“This is not something we set out to find, but we cannot make it go away,” Kashlinsky said. “Now we see that it persists to much greater distances – as far as 2.5 billion light-years away,” he added.

Dark flow describes a possible non-random component of the peculiar velocity of galaxy clusters. The actual measured velocity is the sum of the velocity predicted by Hubble’s Law plus a small and unexplained (or dark) velocity flowing in a common direction. According to standard cosmological models, the motion of galaxy clusters with respect to the cosmic microwave background should be randomly distributed in all directions. However, analyzing the three-year WMAP data using the kinematic Sunyaev-Zel’dovich effect, the authors of the study found evidence of a “surprisingly coherent” 600–1000 km/s flow of clusters toward a 20-degree patch of sky between the constellations of Centaurus and Vela.

The clusters appear to be moving along a line extending from our solar system toward Centaurus/Hydra, but the direction of this motion is less certain. Evidence indicates that the clusters are headed outward along this path, away from Earth, but the team cannot yet rule out the opposite flow.

“We detect motion along this axis, but right now our data cannot state as strongly as we’d like whether the clusters are coming or going,” Kashlinsky said.

The unexplained motion has hundreds of millions of stars dashing towards a certain part of the sky at over eight hundred kilometers per second. Not much speed in cosmic terms, but the preferred direction certainly is: most cosmological models have things moving in all directions equally at the extreme edges of the universe. Something that could make things aim for a specific spot on such a massive scale hasn’t been imagined before. The scientists are keeping to the proven astrophysical strategy of calling anything they don’t understand “dark”, terming the odd motion a “dark flow”.

A black hole can’t explain the observations – objects would accelerate into the hole, while the NASA scientists see constant motion over a vast expanse of a billion light-years. You have no idea how big that is. This is giant on a scale where it’s not just that we can’t see what’s doing it; it’s that the entire makeup of the universe as we understand it can’t be right if this is happening.

The hot X-ray-emitting gas within a galaxy cluster scatters photons from the cosmic microwave background (CMB). Because galaxy clusters don’t precisely follow the expansion of space, the wavelengths of scattered photons change in a way that reflects each cluster’s individual motion.

This results in a minute shift of the microwave background’s temperature in the cluster’s direction. The change, which astronomers call the kinematic Sunyaev-Zel’dovich (KSZ) effect, is so small that it has never been observed in a single galaxy cluster.

But in 2000, Kashlinsky, working with Fernando Atrio-Barandela at the University of Salamanca, Spain, demonstrated that it was possible to tease the subtle signal out of the measurement noise by studying large numbers of clusters.

In 2008, armed with a catalog of 700 clusters assembled by Harald Ebeling at the University of Hawaii and Dale Kocevski, now at the University of California, Santa Cruz, the researchers applied the technique to the three-year WMAP data release. That’s when the mystery motion first came to light.

The new study builds on the previous one by using the five-year results from WMAP and by doubling the number of galaxy clusters.

“It takes, on average, about an hour of telescope time to measure the distance to each cluster we work with, not to mention the years required to find these systems in the first place,” Ebeling said. “This is a project requiring considerable followthrough.”

According to Atrio-Barandela, who has focused on understanding the possible errors in the team’s analysis, the new study provides much stronger evidence that the dark flow is real. For example, the brightest clusters at X-ray wavelengths hold the greatest amount of hot gas to distort CMB photons. “When processed, these same clusters also display the strongest KSZ signature — unlikely if the dark flow were merely a statistical fluke,” he said.

In addition, the team, which now also includes Alastair Edge at the University of Durham, England, sorted the cluster catalog into four “slices” representing different distance ranges. They then examined the preferred flow direction for the clusters within each slice. While the size and exact position of this direction display some variation, the overall trends among the slices exhibit remarkable agreement.

The researchers are currently working to expand their cluster catalog in order to track the dark flow to about twice the current distance. Improved modeling of hot gas within the galaxy clusters will help refine the speed, axis, and direction of motion.

Future plans call for testing the findings against newer data released from the WMAP project and the European Space Agency’s Planck mission, which is also currently mapping the microwave background.

Which is fantastic! Such discoveries force a whole new set of ideas onto the table which, even if they turn out to be wrong, are the greatest ways to advance science and our understanding of everything. One explanation that’s already been offered is that our universe underwent a period of hyper-inflation early in its existence, and everything we think of as the vast and infinite universe is actually a small corner under the sofa of the real expanse of reality. Which would be an amazing, if humbling, discovery.

The image at the top of the page shows the most distant object we have ever observed with high confidence, according to Wei Zheng, the leading astronomer of the team at Johns Hopkins University who that noticed the galaxy on multiple images from both the Hubble and Spitzer space telescopes. At 13.2-billion years old, we are technically seeing this galaxy when it was very young, but its light is only reaching Earth now.

The Daily Galaxy via Peter Woit, New Scientist, and JPL

Daily Galaxy ,com

Amateur Astonomers See Comet ISON Approaching the Sun – Science@NASA

The Mars Underground·1,906 videos

Science@NASA: Comet ISON is still more than two months away from its spectacular close encounter with the sun. Already, the brightening comet has become a good target for backyard telescopes in the pre-dawn sky.

See more videos about Science@NASA:
http://www.youtube.com/playlist?list=….

See more videos about Comet C/2012 S1 (ISON):
http://www.youtube.com/playlist?list=…

See more videos about Comets:
http://www.youtube.com/playlist?list=…

Hubble Ultra Deep Field – Looking To The End Of Time – Best Of Science Channel

Best0fScience·200 videos

http://www.facebook.com/ScienceReason … Hubble Space Telescope – 15 Years of Discovery (Episode 9): Looking To The End Of Time – The Hubble Ultra Deep Field.

The NASA/ESA Hubble Space Telescope is one of the biggest scientific projects of all time and is approaching the 15th anniversary of its launch.


Please SUBSCRIBE to Science & Reason:
http://www.youtube.com/Best0fScience
http://www.youtube.com/ScienceTV
http://www.youtube.com/FFreeThinker

In many ways Hubble is the most successful scientific project in the World, and this event is not likely to go unnoticed. The European Space Agency, ESA, has decided to celebrate this anniversary with the production of a Hubble 15th Anniversary movie called “Hubble – 15 Years Of Discovery”.

The movie covers all aspects of the Hubble Space Telescope project: a journey through the history, the trouble and the scientific successes of Hubble.

This portrait of one of the biggest scientific projects of all time contains large amounts of previously unpublished footage in uncompromised quality.

With the beautiful backdrop of Hubbles visual image treasures running as a red line through the movie, the light and dreaming style tells the most interesting stories about our fascinating Universe and about the change of vision that Hubble has brought us.

The Hubble Space Telescope (HST), named after Edwin Powell Hubble (1889-1953) who was one of the great pioneers of modern astronomy, is a collaboration between ESA and NASA. It is a long-term, space-based observatory. The observations are carried out in visible, infrared and ultraviolet light.

In many ways Hubble has revolutionised modern astronomy, not only by being an efficient tool for making new discoveries, but also by driving astronomical research in general.

During 15 years of viewing the sky, Hubble has taken more than 700000 exposures of more than 22 000 celestial objects. The spacecraft itself has whirled around Earth nearly 88 000 times, travelling more than 4000 million kilometres.

The orbiting observatory generates enough data every day – about 15 gigabytes – to fill more than three DVDs, and in total it has produced 23 terabytes of data, equal to the amount of text in 23 million novels.

Over 3900 astronomers from all over the world have used the telescope, and compiled a long list of scientific achievements, published in more than 4000 papers, such as:

– calculating the precise age of the Universe to be 13 700 million years old);
– confirming the existence of a strange form of energy called dark energy;
– detecting small proto-galaxies that emitted their light when the Universe was less than a 1000 million years old;
– proving the existence of super-massive black holes;
– seeing a comet hitting Jupiter; and
– showing that the process of forming planetary systems is common throughout the galaxy.

http://www.esa.int
http://www.spacetelescope.org

Caught in the Cosmic Web – Dark Matter Structure Revealed – Hubble Space Telescope

Best0fScience·200 videos

http://www.facebook.com/ScienceReason … Dark matter filament studied in 3D for the first time! NASA/ESA Hubblecast 58: “Caught in the Cosmic Web – Dark Matter Structure Revealed by Hubble Space Telescope”.

In this episode of the Hubblecast, Joe Liske (aka Dr J) shows how a team of astronomers has used Hubble and a battery of other telescopes to discover the secrets of massive galaxy cluster MACS J0717. They have found that an invisible filament of dark matter extends out of the cluster. This is our first direct glimpse of the shape of the scaffolding that gives the Universe its structure.

Astronomers using the NASA/ESA Hubble Space Telescope have studied a giant filament of dark matter in 3D for the first time. Extending 60 million light-years from one of the most massive galaxy clusters known, the filament is part of the cosmic web that constitutes the large-scale structure of the Universe, and is a leftover of the very first moments after the Big Bang. If the high mass measured for the filament is representative of the rest of the Universe, then these structures may contain more than half of all the mass in the Universe.

The theory of the Big Bang predicts that variations in the density of matter in the very first moments of the Universe led the bulk of the matter in the cosmos to condense into a web of tangled filaments. This view is supported by computer simulations of cosmic evolution, which suggest that the Universe is structured like a web, with long filaments that connect to each other at the locations of massive galaxy clusters. However, these filaments, although vast, are made mainly of dark matter, which is incredibly difficult to observe.

The first convincing identification of a section of one of these filaments was made earlier this year. Now a team of astronomers has gone further by probing a filament’s structure in three dimensions. Seeing a filament in 3D eliminates many of the pitfalls that come from studying the flat image of such a structure.

http://www.spacetelescope.org/news/he