Steven Cook – Mysteries of the Universe – Gravitational Wave Discovery – New Era in Physics – 3-18-14

Universe 4

Golden Age Of Gaia .com

http://goldenageofgaia.com/2014/03/18/mysteries-of-the-universe-gravitational-wave-discovery-heralds-whole-new-era-in-physics/

Scientists detected telltale signs of gravitational waves using the Bicep2 telescope (far left) at the south pole. Photograph: Lindsey Bleem/South Pole Telescope blog

By Stuart Clark, The Guardian – March 17 2014

http://tinyurl.com/qy9yt6k

Gravitational waves could help unite general relativity and quantum mechanics to reveal a ‘theory of everything’

Scientists have heralded a “whole new era” in physics with the detection of “primordial gravitational waves” – the first tremors of the big bang.

The minuscule ripples in space-time are the last prediction of Albert Einstein’s 1916 general theory of relativity to be verified. Until now, there has only been circumstantial evidence of their existence.

The discovery also provides a deep connection between general relativity and quantum mechanics, another central pillar of physics.

“This is a genuine breakthrough,” says Andrew Pontzen, a cosmologist from University College London who was not involved in the work. “It represents a whole new era in cosmology and physics as well.” If the discovery is confirmed, it will almost certainly lead to a Nobel Prize.

The detection, which has yet to be published in a peer-reviewed scientific journal, was announced on Monday at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and comes from the Background Imaging of Cosmic Extragalactic Polarization 2 (Bicep2) experiment – a telescope at the South Pole.

The detection also provides the first direct evidence for a long-held hypothesis called inflation. This states that a fraction of a second after the big bang, the universe was driven to expand hugely. Without this sudden growth spurt, the gravitational waves would not have been amplified enough to be visible.Galaxyexpansion

“Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point,” said John Kovac of the Harvard-Smithsonian Center for Astrophysics, who leads the BICEP2 collaboration.

The primordial gravitational waves were visible because they created a twisting pattern called polarisation in light from the big bang. Polarisation is the direction in which a light wave oscillates. It is invisible to human eyes, which only register brightness and colour. Sunglasses made from polaroid sheets work by blocking out all light waves except those with a specific polarisation.

Light from the big bang has been turned into microwaves by its passage across space. These microwaves were discovered in 1964 and are known as the cosmic microwave background radiation. Bicep2 was designed to measure their polarisation.

Rumours began on Friday that the detection of primordial gravitational waves would be announced. It had been thought that a gravitational wave signal would have to be surprisingly strong to be detected by the current technology used in ground-based detectors.

The Bicep2 team have spent three years analysing the signal in order to be certain. “This has been like looking for a needle in a haystack, but instead we found a crowbar,” said co-leader Clem Pryke of the University of Minnesota.

Nevertheless, the signal will have to be confirmed. “I think a lot of people will be looking very critically at this,” says Pontzen.

Confirmation could come as early as August. The European Space Agency’s Planck satellite has been looking for this same signal and is due to announce its findings.

Whereas Bicep2 has only looked at part of the sky visible from the south pole, Planck has mapped the whole sky.

If it confirms the signal and its strength then cosmologists will be presented with an extraordinarily rich seam of data about the conditions immediately after the big bang. “We are going to be able to measure all sorts of subtle details to start pinning down how physics operates in those utterly extreme conditions,” says Pontzen.

This could reveal the interface between the two great theories of physics: general relativity and quantum mechanics. Despite almost a century of effort, the world’s physicists have not been able to show how these theories work together. The primordial gravitational waves that produced the signal seen by Bicep2 were produced in interactions that took place at a trillion times the energies that can be produced in the Large Hadron Collider at Cern.

“This is like turning the whole universe into a particle physics experiment,” said Hiranya Peiris, a cosmologist from University College London.

It could even show them the way to join the two theories together, producing what is sometimes called “the theory of everything”.

“Gravitational waves emitted at the time of the big bang can tell us how the universe came to exist,” said Dr Ed Daw, an astronomer at the University of Sheffield. “If these results prove correct, we will have new key information on the very early universe, information that is hard to get from any other source.

“Gravitational waves are a new frontier in astrophysics and cosmology. If today’s findings are accurate then it will further strengthen our understanding of how the universe formed.”

The signal detected by Bicep2 is not easy to see because it is masked by distortions caused by the light’s passage through clusters of galaxies, and through dust clouds in the Milky Way. These distortions must be carefully stripped away before the primordial signal can be revealed.

“They have thought very carefully about how to remove the experimental and other contaminating effects. They are a very experienced team and this is the real deal but it doesn’t mean that they are necessarily right,” said Daw.

Some subtle contamination may yet be affecting their data. The only way to know for sure is to have other telescopes and spacecraft see the signal too.

There is already a minor disagreement. Last year the European Space Agency published preliminary results from its Planck satellite. They were based on data that measured temperature rather than polarisation, but close examination reveals that they are not a smooth fit with the results announced by Bicep2.

“It’s not completely incompatible but it does raise questions. It needs thinking about in a calm way,” said Pontzen.

Taken at face value, however, these new results mean that cosmologists can now begin to tease out the details of the big bang. The term inflation is used to represent a class of models that each have different attributes and effects on the universe. The strength and the pattern of the gravitational wave signal will be used to tell cosmologists about which inflationary models are the correct ones.

Although no cosmologist truly doubts the existence of gravitational waves nothing like today’s announcement has ever been seen before. “This is a different kettle of fish entirely. We are talking about the fingerprint of the big bang in gravitational waves on the whole universe,” said Daw.

Gravitational waves are ripples in the space-time continuum, which was envisaged by Albert Einstein in his general theory of relativity. Photograph: Keystone/Getty Images

Gravitational waves are ripples in the space-time continuum, which was envisaged by Albert Einstein in his general theory of relativity. Photograph: Keystone/Getty Images

What are Gravitational Waves?

By Stuart Clark, The Guardian – March 17, 2014

http://tinyurl.com/merh3oh

What does the apparent discovery of gravitational waves by the Bicep telescope say about inflation and the big bang?

What are gravitational waves?

Gravitational waves are ripples that carry energy across the universe. They were predicted to exist by Albert Einstein in 1916 as a consequence of his General Theory of Relativity. Although there is strong circumstantial evidence for their existence, gravitational waves have not been directly detected before. This is because they are minuscule – a million times smaller than an atom. They are like tiny waves on a lake – from far away, the lake’s surface looks glassy smooth; only up very close can the details of the surface be seen. Particularly exciting are “primordial” gravitational waves, which were generated in the first moments of the universe’s birth. These carry vital information about how the universe began.

What is general relativity?

In 1916, Albert Einstein discovered a mathematical way to explain gravity. He called it his general theory of relativity. It relied on a set of coordinates that described space and time together, known as the space-time continuum. Matter and energy warp the space-time continuum like heavy weight on a mattress. The warping creates the force of gravity. Gravitational waves are ripples in the space-time continuum (instead of an ordinary mattress, think of a waterbed). It isn’t all esoteric mathematics. General relativity tells us how gravity affects time, which must be taken into account by your satnav to tell you accurately where you are.

What is the significance of this discovery?

If scientists at Harvard University have detected gravitational waves, it is significant for two reasons. First, this opens up a whole new way of studying the Universe, allowing scientists to infer the processes at work that produced the waves. Second, it proves a hypothesis called inflation. This can be used to give us information about the origin of the universe, known as the big bang.

How can gravitational waves be detected?

A telescope at the south pole, called Bicep (Background Imaging of cosmic Extragalactic Polarisation), has been searching for evidence of gravitational waves by detecting a subtle property of the cosmic microwave background radiation. This radiation was produced in the big bang. It was originally discovered by American scientists in 1964 using a radio telescope and has been called the “echo” of the big bang. Bicep has measured the large-scale polarisation of this microwave radiation. Only primordial gravitational waves can imprint such a pattern, and only then if they have been amplified by inflation.

What is inflation?

The big bang was originally hypothesised by Belgian priest and physicist Georges Lemaître. He called it “the day without yesterday” because it was the moment when time and space began. But the big bang does not fit all astronomers’ observations. The distribution of matter across space is too uniform to have come from the big bang as originally conceived. So in the 1970s, cosmologists postulated a sudden enlargement of the universe, called inflation, that occurred in the first minuscule fraction of a second after the big bang. But confirming the idea has proved difficult. Only inflation can amplify the primordial gravitational wave signal enough to make it detectable. If primordial gravitational waves have been seen, it means that inflation must have taken place.

What next? Do cosmologists just pack up and go home?

No way. Now the work really begins. Einstein knew that general relativity did not mesh with another theory of physics called quantum mechanics. Whereas general relativity talks about gravity and the universe as a whole, quantum mechanics talks about the small scale of particles and the other forces of nature, the strong and weak nuclear forces, and electromagnetism. Despite almost a century of effort, the world’s physicists have not been able to show how these theories work together. The primordial gravitational waves were generated when gravity and the universe were working on the same scale as particles and the other forces of nature. This detection and the subsequent analysis will hopefully tell us how. If it does, this could lead to what physics wistfully call “the theory of everything”.

http://goldenageofgaia.com/2014/03/18/mysteries-of-the-universe-gravitational-wave-discovery-heralds-whole-new-era-in-physics/

Author: Higher Density Blog

My Spiritual Path and quest for Ascension led me to begin Higher Density Blog in late 2012. Sharing discoveries, exploring 5D Abilities, Universe within, Unity Consciousness, New Science, Galactics, Awakening Humanity and Arts of Creation weave the fabric of Higher Density Blog.

2 thoughts on “Steven Cook – Mysteries of the Universe – Gravitational Wave Discovery – New Era in Physics – 3-18-14”

  1. In the meaning of Gravitational Wave .. I find the cosmic meaning of Love .. which is to be pulled within the attraction force of the Source .. and if that Source is the First Magnitude Father Star .. we are then Loved by that Star, Loved by that Father .. and such a gravitational wave as mentioned in this article .. explains the forces existing in Gravitational Wave’s High Frequency signals and their attraction force .. which can pull a person, place or thing … through space and time … to then sit wherever the Source might be …

    Sort of reminds me of that promise of “I go to prepare a place for you (in the stars) and where I (the Father Magnitude Star) am … ye shall also be”

    And this also reminds me of the cosmic meaning to .. “in my Father’s house there are many mansions” .. meaning in the alliance of the First Magnitude Star’s zodiac house .. there are many mansions ..

    We are Loved by the Father … we need only to reach for the stars … ..

    From Wikipedia,
    In physics, gravitational waves are ripples in the curvature of spacetime that propagate as a wave, travelling outward from the source. Predicted in 1916 by Albert Einstein to exist[1] on the basis of his theory of general relativity,[2] gravitational waves theoretically transport energy as gravitational radiation. Sources of detectable gravitational waves could possibly include binary star systems composed of white dwarfs, neutron stars, or black holes.

    Like

Comments are closed.